scrna4/6 Jupyter Notebook lamindata

Analyze a collection in memory#

Here, we’ll analyze the growing collection by loading it into memory.

This is only possible if it’s not too large.

If your data is large, you’ll likely want to iterate over the collection to train a model, the topic of the next page (scrna5/6).

import lamindb as ln
import lnschema_bionty as lb
import anndata as ad
💡 lamindb instance: testuser1/test-scrna
ln.track()
💡 notebook imports: anndata==0.9.2 lamindb==0.65.0 lnschema_bionty==0.37.0 scanpy==1.9.6
💡 saved: Transform(uid='mfWKm8OtAzp85zKv', name='Analyze a collection in memory', short_name='scrna4', version='1', type=notebook, updated_at=2024-01-03 01:34:26 UTC, created_by_id=1)
💡 saved: Run(uid='OIeI3XIWVupVhX4ON5Aw', run_at=2024-01-03 01:34:26 UTC, transform_id=4, created_by_id=1)
ln.Collection.filter().df()
uid name description version hash reference reference_type transform_id run_id artifact_id visibility updated_at created_by_id
id
1 dXqqPuhgFCXaWOCKzDyL My versioned scRNA-seq collection None 1 9sXda5E7BYiVoDOQkTC0KB None None 1 1 1.0 1 2024-01-03 01:33:46.293926+00:00 1
2 dXqqPuhgFCXaWOCKJfjb My versioned scRNA-seq collection None 2 BOAf0T5UbN_iOe3fQDyq None None 2 2 NaN 1 2024-01-03 01:34:14.021595+00:00 1
collection = ln.Collection.filter(
    name="My versioned scRNA-seq collection", version="2"
).one()
collection.artifacts.df()
uid storage_id key suffix accessor description version size hash hash_type n_objects n_observations transform_id run_id visibility key_is_virtual updated_at created_by_id
id
1 dXqqPuhgFCXaWOCKzDyL 1 scrna/conde22.h5ad .h5ad AnnData Human immune cells from Conde22 None 57612943 9sXda5E7BYiVoDOQkTC0KB sha1-fl None None 1 1 1 True 2024-01-03 01:33:46.289802+00:00 1
2 ocAtLALNedkPN5FOxn0I 1 None .h5ad AnnData 10x reference adata None 853388 eKH1ljAEh7Kd81-o2H4A7w md5 None None 2 2 1 True 2024-01-03 01:34:12.914365+00:00 1

If the collection isn’t too large, we can now load it into memory.

Under-the-hood, the AnnData objects are concatenated during loading.

The amount of time this takes depends on a variety of factors.

If it occurs often, one might consider storing a concatenated version of the collection, rather than the individual pieces.

adata = collection.load()

The default is an outer join during concatenation as in pandas:

adata
AnnData object with n_obs × n_vars = 1718 × 36503
    obs: 'donor', 'tissue', 'cell_type', 'assay', 'n_genes', 'percent_mito', 'louvain', 'artifact_uid'
    obsm: 'X_umap', 'X_pca'

The AnnData has the reference to the individual artifacts in the .obs annotations:

adata.obs.artifact_uid.cat.categories
Index(['dXqqPuhgFCXaWOCKzDyL', 'ocAtLALNedkPN5FOxn0I'], dtype='object')

We can easily obtain ensemble IDs for gene symbols using the look up object:

genes = lb.Gene.lookup(field="symbol")
genes.itm2b.ensembl_gene_id
'ENSG00000136156'

Let us create a plot:

import scanpy as sc

sc.pp.pca(adata, n_comps=2)
2024-01-03 01:34:29,677:INFO - Failed to extract font properties from /usr/share/fonts/truetype/noto/NotoColorEmoji.ttf: In FT2Font: Can not load face (unknown file format; error code 0x2)
2024-01-03 01:34:29,741:INFO - generated new fontManager
sc.pl.pca(
    adata,
    color=genes.itm2b.ensembl_gene_id,
    title=(
        f"{genes.itm2b.symbol} / {genes.itm2b.ensembl_gene_id} /"
        f" {genes.itm2b.description}"
    ),
    save="_itm2b",
)
WARNING: saving figure to file figures/pca_itm2b.pdf
_images/a4961ade07b739d2faf6724e5938fd2a940bdaa1ea2cb478c79106b43a7feb05.png

We could save a plot as a pdf and then see it in the flow diagram:

artifact = ln.Artifact("./figures/pca_itm2b.pdf", description="My result on ITM2B")
artifact.save()
artifact.view_flow()
Hide code cell output
_images/70b507948f673f45de7045860dab085d5bba252d4cca877624f4c89f38bae581.svg

But given the image is part of the notebook, we can also rely on the report that we create when saving the notebook via the command line via:

lamin save <notebook_path>

To see the current notebook, visit: lamin.ai/laminlabs/lamindata/record/core/Transform?uid=mfWKm8OtAzp8z8